Betting on bits
contextual influences on the perception of ‘phonetic categories’

Sarah Hawkins
University of Cambridge
sh110@cam.ac.uk
Issues

• Context and phoneme/word identification

• Structuring a model of speech understanding
 – top-down vs. bottom-up information
 – abstraction vs exemplar representation
Oh yeah? So why doesn’t /wa/ sound the same in Lagos and Hollywood and Birmingham?

Oh yeah? So why doesn’t /wa/ sound the same in Tahiti and Hawaii and Huntingdon?

We can understand speech because there’s an invariant acoustic correlate for every one of Morris’ features.
Fine phonetic detail (FPD): random or systematic?

much is systematic & perceptually salient

but does **NOT** help to identify citation form words or phonemes
Fine phonetic detail indicates:

- position in syllable; syllable structure
- word boundaries
- grammatical status
- places where you can join in a conversation
- discourse function of ‘the same’ words
- other things crucial to a normal conversation
- gross and subtle indexical information
Systematizing fine phonetic detail

• a different way of conceptualizing
 – phonetic and phonological structure (Firthian)
 – the processes of understanding speech

• *Journal of Phonetics* 31(3/4)
 especially John Local; Sarah Hawkins

• Hawkins & Smith (2001)
 Italian Journal of Linguistics – Riv. de Ling. 13, 99-188
 http://kiri.ling.cam.ac.uk/sarah/pubs.html
Systematizing fine phonetic detail

– the processes of understanding speech

• *Journal of Phonetics* 31(3/4)
especially John Local; Sarah Hawkins

• Hawkins & Smith (2001)
 Italian Journal of Linguistics – Riv. de Ling. 13, 99-188
 http://kiri.ling.cam.ac.uk/sarah/pubs.html
What is a category?

A class or division in a system of classification

(OED)
Structure of a category

Quality of exemplars

Boundaries

good best

ok

poor
Thrush in summer

Thrush in snow

Sparrow in summer
"Please say what this word is:
 bit bet bat but

F1 of CARRIER
 bet 200-380 Hz
 bit 380-660 Hz

Ladefoged and Broadbent (1957) JASA 29, 98-104
“Range effects” on CP boundary

- identification expt e.g.
- VOT continuum
da...........ta
- when stimuli are removed from one end, the 50% id boundary shifts towards the other
What causes a boundary shift?

- stimulus range (distribution)
- perceived rate of speech
- lexicality/Ganong (word~nonword)
- sentence meaning (if the task is appropriate)

What causes a boundary shift?

Perception adjusts to the distribution of stimuli and is more forgiving about unclear sounds if the message makes sense.

Much evidence that ‘better’ instances of phonemes exert stronger perceptual effects of many types:

Samuel (P&P 1982 adaptation)
Kuhl (1992 perceptual magnet effect [PME])

And that context affects category goodness
Hawkins & Barrett (ASA 04: PME)
Allen & Miller (P&P 2001: rate and lexicality)
CP: category goodness

Mediated Priming in lexical decision task

A /t/ with a short VOT primes unrelated words via rhymes that have /d/ instead of /t/

t^*ime primes penny via dime

Misiurski et al. (2005) Brain & Lang. 93, 64-78
Linguistic categories: summary

• Perception adjusts to the distribution of stimuli and is more forgiving about unclear sounds if the message makes sense or the task encourages it.

• ‘Units’ are functionally inseparable from ‘context’.

• Implication: mental representations of linguistic-phonetic categories are relational and plastic.
How might this plasticity occur?

An example
Plasticity of single neurons in the Primary Auditory Cortex (PAC)
Spectro-temporal receptive fields (STRFs) in PAC

• Recording from single neurons in PAC
• Sensitive to particular frequency ranges and temporal relationships
• Training:
 – broadband noise: lick
 – tone (constant frequency sine wave): don’t lick
• Test: different tone frequency

Fritz, Elhilali, Shamma, et al. 2003, 2005
Plasticity of STRFs in PAC

- Shift in excitatory response to tone of similar frequency
- Additional field to yet more different tone
- Only when a response is required: ‘meaning’
- Poorer task performance and weaker plasticity are correlated

Excitatory field BF neuron best freq
Inhibitory field target freq
Summary: STRF changes in PAC

• Swift (2.5-8 minutes); last several hours

• Reflect
 – sensory content
 – changing behavioral meaning of acoustic stimuli

• Consistent with facts of speech perception

• Similar adaptation/learning probably occurs earlier (lower down) in the auditory pathway
Brain activation for category boundaries

- Many studies: Superior Temporal Gyrus (STG) is active when phonetic decisions are made (+ many other areas)
- STG activation does not differ when the decisions are hard (other areas do e.g. frontal regions)

Brain activation for category boundaries: Ganong effect

• STG is sensitive to change in category boundary due to lexical status: gift-kift; giss-kiss

• Conclusion: lexical knowledge influences basic phonetic categorization processes

Myers & Blumstein (CNS 2005)
yet also.... simple ba-da continuum

• brain activation differs for category centers & boundaries (adaptation fMRI)

 centers: Primary auditory cortex, left parietal
 boundaries: left SMG, L middle frontal, R prefrontal, Right cerebellum, anterior cingulate

Raizada & Poldrack (CNS 2004; in prep)
What does this mean?

• Category boundaries and centers are analyzed in many different parts of the brain: don’t and can’t act independently

• **Relationships** in current signal are constantly interpreted from all available evidence:
 – knowledge
 – current sensation (quite detailed)
 – attention
Fine phonetic detail provides all sorts of information, not just phonological. Here, it is grammatical.
Summary

• Brain is ‘opportunistic’: it uses all available information to understand a message

• Fine phonetic detail can be fundamental

• What listeners do with FPD depends on what they are doing at the moment
Modeling phonetic representation

• Phonetic categories can map directly to phonological categories BUT
 – relational, dynamic, self-organizing, (multi-modal), context-sensitive, task-sensitive

• Sound patterns map to meaning via processes that involve complex (embodied?) structures:
 – MULTIPLE UNITS of speech perception

• Top-down and bottom-up information, episodic vs abstract representation, may not be distinguishable in speech communication